
Reusing Software Developments

Allen Goldberg l

Kestrel Institute
3260 Hillview Ave.

Palo Alto, CA 94304

Abstract

Software development environments of the fu-
ture will be characterized by extensive reuse of
previous work. This paper addresses the issue
of reusability in the context in which design is
achieved by the transformational development of
formal specifications into efficient implementa-
tions. It,explores how an implementation of a
modified specification can be realized by replay-
ing the transformational derivation of the original
and modifying it as required by changes made
to the specification. Our approa.ch is to struc-
ture derivations using the notion of tactics, and
record derivation histories as an execution trace
of the application of tactics. One key idea is
that tactics are compositional: higher level tac-
tics are constructed from more rudimentary using
defined control primitives. This is similar to the
approach used in LCF[l2] and NuPR.L[l, 8j.

Given such a derivation history and a modi-
fied specifica.tion, the correspondence problem
[21,20] a.ddresses how during replay a correspon-
dence between program parts of the origina.l and
modified program is established.

*Supported by RADC contract F30602-88-C-0127, and
NSF Grant DhlC-8617i59. Views and conclusions con-

tained within this report are the author’s and should not
be interpreted as representing the official opinion or policy

of RADC, the U.S. Government, or any person or agency

connected with them.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
Q 1990 ACM 0-89791-418-X190/0012-0107...$1.50

Our approach uses a combination of name associ-
ation, structural properties, and associating com-
ponents to one another by intensional descrip-
tions of objects defined in the transformations
themselves.

An implementation of a rudimentary replay
mechanism for our interactive development. sys-
tem is described. For example with the system
we can first derive a program from a specification
that computes some basic statistics such as mean,
variance, frequency data, etc. The derivation is
about 15 steps; it involves deriving an efficient
means of computing frequency data, combining
loops and selecting data structures. We can then
modify the specification by a.dding the ability to
compute the maximum or mode and replay the
steps of the previous derivation.

1 Introduction

We are addressing the issue of reusability in the
context in which software design is achieved by a
transformational development of a. f0rma.l specifi-
cation of the problem into a.n efficient implemen-
tation. This paper explores how a specification
derived as a modification of a.n etist.ing design
can be realized by replaying the transformational
derivation of the original and modifying it as re-
quired by changes made to the specification. We
believe tools to support such incremental reuse of
designs will become an essential, integral part of
software development environments of the future.

Reuse of the product, or component reuse is cru-
cial to bottom-up programming. R.eusable com-

107

ponents, such as user interface packa,ges, mathe-
matical subroutine libraries, graphics standards,
UNIX utilities, database systems etc., provide
a powerful set of primitives that define a vir-
tual machine base from which applications can
be constructed. Component reuse can be en-
hanced by improved programming langua,ge sup-
port and improved programming environments.
The need for improved programming language
support is exemplified by the lack of d;ata ab-
straction available in current languages. To use
a scientific subroutine package that manipulates
matrices requires agreement of the representation
of matrices in both the package and the appli-
cation. Providing an abstraction mechanism is
insufficient unless it supports conversion between
differing representa.tions. An example of environ-
mental support needed for component reuse is an
indexing and retrieval system to locate relevant
components.

Reuse is emerging as an important means of en-
hancing software productivity. It is wor,thwhile
to distinguish the reuse of the product of a soft-
ware development effort, i.e. code, from reuse
of the knowledge utilized in the generation of the
product.

It has been frequently observed that much of the
knowledge used to create a component does not
appear explicitly in the component and often not
in its accompanying documentation. This knowl-
edge is applied in ma.king design decisions, such
as choice of problem decomposition, data repre-
sentation, and algorithm choice. It is claimed
that loss of this information contributes to the
high cost of maintenance. Reusing this knowl-
edge is design reuse. To achieve design reuse,
the issue of capturing and representing designs
must be faced.

The basis for design capture we consider is to
formalize software development within a trans-
formational framework. In this model specifi-
cations are written in formal specification lan-
guage. Implementations are derived from specifi-
cations by application of consistency-preserving
transformations to an annotated abstract syn-
tax tree representation. In our model this pro-
cess is semi-automatic; transformations are ap-

plied automatically and manually. At a given
point in the derivation many transformations are
potentially applicable. Implementors express de-
sign decisions by selecting one of the many pos-
sible transformations applicable at each step of
a derivation. Recording their selections creates a
design record which captures this information.

The transformational approach applied to soft-
ware development has been extensively studied
[lo, 17,27,28]. P owerful, generic techniques such
as data refinement, finite differencing, loop com-
bining, inversion, algorithm design, etc. have
been developed. The field also benefits from
related work in compiler optimization, software
specification, theorem proving, and programming
language theory and practice.

Program tra.nsformation systems are a promis-
ing but not-well developed technology. Existing
systems have focussed on deriving implementa-
tions for medium-scale combinatorial computing
problems [26, 91. Ongoing work at Kestrel Insti-
tute has led to the development of a transforma-
tional syst,em, called h’lDS[SO, 311 on which our
replay work is based. Using the system we have
been able to carry out derivations that carry non-
trivial examples through many semantic levels
and apply a wide range of design and optimiza-
tion techniques. For example in one derivation we
derive from a high-level specification of a topo-
logical sort a LISP implementation which is as ef-
ficient as any hand-coded version [5]. The deriva-
tion is over 40 steps long where a step involves
such diverse activity as inverting maps, com-
puting containment relations among set-theoretic
data structures, simplifying expressions, combin-
ing loops, and selecting data structures.

The reuse problem in this context is to capture
the design decisions expressed as the manual se-
lection of transformation rules, so that these de-
cisions can be replayed on a specification simi-
lar to the original. In a conventional SDE de-
velopers rely on a very tight loop in which they
execute, modify and re-execute programs. In a
transformation environment where compilation is
replaced by semi-automated transformation, that
loop is no longer tight. One use of replay is to
tighten the loop, by replaying the transforma-

108

tions of the original derivation to the modified
specification. Within the transformational model
maintenance is done by modifying specifications
and rederiving an implementation. Thus replay
is essential to this attractive approach to software
maintenance.

The transformational methodology supports de-
sign reuse in two interesting ways. First the cre-
ation of transformations and tactics formalizes
general design knowledge in a highly reusable
way. Second replay reuses design decisions made
for related specifications.

The availability of a mature transformational sys-
tem such as KIDS has proved invaluable for ex-
perimentation with replay. Conversely everyday
use of KIDS has motivated the creation of a re-
play capability.

In this paper we report progress in the following
areas:

l An approach to representing a design history
was developed. The approach is to struc-
ture the derivation system using the notion
of tactics, and record derivation histories as
an execution trace of the a.pplication of tac-
tics. One key idea is that tactics are compo-
sitional: higher level tactics are constructed
from more rudimentary using defined control
primitives. This is similar to the a.pproach
used in LCF[l!, IS] and NuPRL[l, 81.

l An approach to the correspondence problem
is described [21, 201. The correspondence
problem addresses how during replay a cor-
respondence between program parts of the
original and modified program is established
Our approach uses a combination of name
association, structural properties, and asso-
ciating components to one another by de-
scriptions of objects defined in the transfor-
mations themselves.

l An implementation of a rudimentary deriva-
tion management and replay mechanism for
KIDS is described. Using the system we
were able to perform a number of interesting
rederivations. We have also built up a set of

tools for derivation management, induding
the ability to store and reload derivations,
browse derivations, highlight changes to pro-
gram text, etc.

2 Approach

2.1 Recording Derivations

2.1.1 Representation of the Design

The first important technical problem faced in
this work is the representation of the design his-
tory to be used as the basis for the replay mech-
anism. The process of development has been de-
scribed as starting with a specifica.tion and apply-
ing a 1inea.r sequence transformations to yield an
implem’ent~a.tion. However just recording the lin-
ear sequence of development steps is inadequate.
An analogy with mathematical proofs is reveal-
ing. Formally a mathematical proof is also just a
linear sequence of formulas obtained by a,pplying
inference rules. This is an appropriate view for
providing a, simple meta-theory (e.g. to prove the
soundness of the system), but for little else. Just
as a mathematical proof has structure (lemmas,
case analysis, formation of induction hypothesis,
reformula.tion, etc.) and is constructed and ex-
plained in terms of that structure, a similar, but
formal, structure must be devised for transfor-
mational developments.

What kinds of structures do we observe in soft-
ware developments tha.t must be formalized? We
survey a few here to motivate our solution.

l One common structure is the virtual ma-
chine model. Here the specification is ex-
pressed in terms of an abstract language
and then mapped in phases to successively
lower-level virtual machine or language lev-
els. Compilers are often constructed along
this paradigm. The source language is at
this highest abstract level. In the first phase
this may be ma.pped to retargetable inter-
mediate code, at a lower abstract level, and

109

then in a second phase to assembly lan-
guage. Traditional compilers rarely involve
more than two phases. Boyle’s [6] Lisp to
Fortran transformation system goes ,through
7 phases, each mapping to a different virtual
machine level.

l A second common structure is that of step-
wise problem decomposition. A problem is
decomposed into components and the imple-
mentation of each of the components pro-
ceeds independently.

l A third is the exhaustive application of a set
rewriting rules. This is typical of routine
simplification steps or steps that rewrite the
program into a normal form. It is common to
apply this strategy in conjunction with the
first. Each phase mapping between language
levels is the exhaustive application of a set
of rewriting rules.

l A fourth structure is that of case analysis.
This is of course used to express strategies
which are conditioned on the form of the
specification or other information about the
specification supplied to the system.

This is a representative but not exhaustive list
of high-level development steps found in systems
that formally map specifications into implemen-
tations. Observe that these high-level develop-
ment steps are compositions of more elemental
steps and that they are expressible in terms of
common control structures found in ordinary pro-
gramming such as conditional, sequential com-
position, parallel composition and iteration. For
example, a problem decomposition step is the se-
quential composition of a step which divides the
problem in sub-problems, and a step consisting of
the parallel composition of steps that solve the
subproblems. Parallel decomposition does not
impose a temporal order on development steps
when no logical dependency exists.

This suggests a straight-forward approach to the
problem of structuring derivations. The develop-
ment system is constructed from a set of prim-
itive operators, using composition mechanisms
such as the ones described above. The resulting
composite operators are called tacGs.

This is the approa.ch taken in LCF and NuPrl,
systems aimed at the construction of mathemat-
ical proofs, not programs. It is also the approach
taken by Wile [34] The recorded deriva.tion is sim-
ply a trace of the execution of the tactics. This is
a direct implementation of the notion of process
programming [25] in a transformational context.

A different approach can be based on AI-style
planning theory [ll]. H ere the description of the
development step is given in terms of a goal- a
declaratively stated postcondition that describes
properties of the intended result of the step. For
example, a step which transforms code into a
normal form would be expressed by a declara-
tive description of the form to be achieved. In
addition to a goal structure, there are methods,
which are operations that may be used to achieve
a goal. It becomes the task of the system to syn-
thesize a meta-program of methods whose result
achieves the goal. The planning approach is a
weak method because synthesizing plans is a dif-
ficult problem, and because declarative specifica-
tion of post-conditions is often unwieldy.

2.1.2 An Elementary Tactic Language

This section describes an elementary tactic lan-
guage sufficient to illustrate the interaction of the
replay mechanism and the tactic language. A full
tactic language is under development.

The tactic language is a control language. The
computation responsible for transforming pro-
grams lies within primitive tactics written in
some other language, which in our case is REFINE
[32] Primitive tactics are represented by REFINE
procedures which are called by the tactic lan-
guage interpreter. The form of a primitive tactic
is:

procedure-name (parameter-list)
[returns identifier-list]

The identifier-list, and parameter-list are each
lists, separated by commas, of an identifier fol-
lowed by a colon followed by a type expres-
sion. The procedure is called supplying actual

110

parameters, which generally are nodes of the ab-
stract syntax tree (AST) representing the pro-
gram. The procedure transforms the program as
a side-effect. It returns a list of values which are
then bound to the variables appearing in iden-
tifier list following the keyword returns. These
variables are called tactic variables. It also re-
turns an indication of whether the tactic suc-
ceeded or failed.

The tactic variables appearing in the identifier
list must be declared in a containing tactic called
an abstraction tactic. An abstraction tactic al-
lows the construction of a tactic with a name,
formal parameters, local variables and a body.
These tactics have the form:

tactic-name (parameter-list) =
let identifier-list in tactic

ret urns identifier-list

An abstraction tactic is invoked the same way
as a primitive tactic. The formal parameters are
bound to the actual values, the local tactic vari-
ables are allocated and the tactic following the
keyword in is executed. The tactic fails if the
tactic following the keyword in fails.

Primitive tactics are composed using control
primitives. The most elementary is sequen-
tial composition. This is simply denoted as
tacticl;tactic2;. . . ; tactic,. It represents the tac-
tic which executes each tactic sequentially. This
tactic fails if any of its sub-tactics fail.

The parallel execution of tactics is denoted
tacticllltactic2lj . . . /Itactic,,. It represents the
tactic which executes each tactic once in any or-
der or conceptually at least, in parallel. Parallel
composition is used when there is no logical de-
pendence among the tactics, and so no temporal
order on their execution should be specified. This
tactic fails if any of its sub-tactics fail.

The conditional tactic has the form

if condition then tactic
elseif condition . . . else tactic

The condition must be a function call which re-
turns a boolean value. The tactic fails if the sub-
tactic that executes fails.

The syntax tacticl?tactic2 denotes a tactic which
executes tacticl; if this fails it executes tact&.
This is a useful exception handling mechanism.

Finally there is a repetition tactic.

while condition do tactic

Example. This is a tactic that will exhaustively
find and combine all pairs of loops that may be
merged within a program part p, which is passed
as a parameter.

Combine-Loops(p: progmm-part) =
let Loop-l : program-part,

Loop-2 : progmm-part,
Combined-Loop : progmm-part

in
while exists-combinable-loops(p)

(Find-Combinable-Loops(p)
returns Loopl, Loop-Z;

Merge-Loops(Loop-1, Loop-2)
returns Combined-Loop;

Simplify(Combined-Loop))

A tactic such as Combine-Loops may be incor-
porated into another tactic or may be invoked
directly by the user.

2.2 The Replay Problem

The replay problem is: given an original program
P, its derivation history D, and a modified pro-
gram P’, utilize.

Parameter Correspondence. The execution
of a tactic may cause a tactic variable to be
bound to some code. Code bound to the
same variable corresponds.

111

Structure correspondence is a weak syntatic-
based notion used in the absence of stronger
heuristic and semantic information generated by
the other correspondence methods. It can be
made more powerful by the adoption of program
dependence graphs (13,141 as the underlying rep-
resentation instead of annotated abstra.ct syntax
trees. PDG’s incorporate data and control flow
dependencies into the representation and factor
out syntactic differences that do not contribute
to semantic behavior. Using PDGs instead of
ASTs would require a major revision to the KIDS
system and a better treatment by PDGs of non-
scalar variables.

Parameter correspondence is a powerful notion,
because it captures a semantic correspondence.
Often when a tactic is applied it creates a code
segment. Suppose that when the tactic is re-
played a new code segment is created. With re-
spect to the semantics encoded in the tactic both
code segments play the same role and a corre-
spondence is established. For example, a divide-
and-conquer algorithm design tactic will generate
identifiable code components such as code1 for the
base case; code for dividing the problem into sub-
problems, etc. Parameter correspondence would
identify, say, code for the base case in each deriva-
tion as corresponding.

Our replay algorithm maintains a binary rela-
tion called the correspondence relation. The first
and second components of the relation are nodes
of the AST taken from the derivation execution
trace of D and D’ respectively. Intuitively, a pair
is in the correspondence relation if there is some
evidence that the two pieces of abstract syntax
represent code playing the same role in interme-
diate versions of P and P’.

The correspondence relation is initialized as fol-
lows. The language that P and P’ are written in
is a single-assignment functional langua.ge. It has
a binding construct, known as let*, and iteration
construct for*. These constructs introduce local
names and expressions defining the value denoted
by name. A heuristic of name equivalence is im-
plemented by initializing the correspondence re-
lation to include pairs of AST nodes from P and
P’ that define the same variable name within cor-

responding program scopes. As replay proceeds
the correspondence relation will be updated.

Replay proceeds by re-executing each step of the
execution trace D, starting with P’ instead of P,
and using the correspondence relation to substi-
tute actual parameters from P’ and its deriva-
tives for values from P. How the step is replayed
is described by a case analysis based on the type
of the tactic. The tactic may be a primitive tac-
tic, an abstraction tactic, an repetition tactic, a
conditional tactic, etc.

If the step to be replayed is the execution
of a primitive tactic, pt(pl, . . . ,pm) returns
id* , . . .id, then the tactic pt is invoked. Actual
parameters must be supplied for pr , . . . , p,. If a
pa.rameter is a tactic variable, its current value
is used. If it is a node in the AST for P, call it
B, then a corresponding node in P’ is obtained
as follows: First the correspondence relation is
checked. If B is paired with a corresponding node
B’ then use B’ as the actual parameter. Other-
wise starting at B traverse up the AST to the first
node A for which A appears in the correspon-
dence relation paired with some node A’, record-
ing the labels on the edges traversed. If there is
no such A then stop at the root. Then starting at
A’ or the root of P’, move down the AST follow-
ing the same la,bels in reverse order to arrive at
a node B’. Use B’ as the value of the a.ctual pa-
rameter corresponding to B. An example is given
in Figure 1. If the paths do not correspond then
replay fails on that step and manual intervention
is necessa.ry. This heuristic of using path cor-
respondence implements the structure heuristic.
It recognizes that designed artifacts have compo-
nent structure and substructure. In other words,
components are recursively divided into subcom-
ponents, and this pa.rts hierarchy can be used to
find corresponding components.

With all its parameters instantiated the primitive
tactic is applied. If it fails, replay has failed on
that step and the user is informed. Otherwise the
tactic may return values to tactic variables with
the returns clause. Parameter correspondence is
implemented by augmenting the correspondence
relation with pairs of AST nodes that were re-
turned as the values of the same tactic variable

112

OrigiMl ProgrWfl Modified Program

Figure 1: Establishing a Correspondence

in the original and replayed derivation. Further-
more, if any new variables were introduced by the
tactic, the nodes representing those variables are
made to correspond.

Other tactics are handled similarly with the ex-
ception of conditional and repetition. Suppose
a conditional tactic is executed and in the orig-
inal derivation the condition evaluates to true
and the then branch is executed. If the con-
dition during replay evaluates to false the else
branch is executed with the correspondence rela-
tion used to instantiate parameters as described
above. The correspondence relation will not be
updated when executing the else branch. Upon
conclusion of the else branch, normal replay
continues with the step following the conditional.
A similar strategy is applied to repetitions.

2.3 An Initial Implementation

In our current implementation, we have not im-
plemented a tactic language so that each tactic is
primitive. This means that parameter correspon-

dence cannot be used, since derivation structur-
ing information is not present. However the im-
plementation follows the described mechanism in
all other respects. We have successfully used the
replay mechanism on a number of examples. The
results are described in the next section.

Experience using our system has suggested many
features that would make a replay system user-
friendly.

Viewing. Currently the system displays a win-
dow showing all the derivation steps. The
user can mouse on any step and display the
program as it appears prior to the execu-
tion of the step. The user may initiate a
new derivation path from that step and the
resulting tree of derivations is displayed. A
desired feature is the ability to have more se-
lected views, especially when the tactic lan-
guage is implemented. For example we may
wish to see an “executive” view that only
shows the top-level development steps. A
user may wish to explode a derivation step
to see its sub-tactics. A user may wish to
only see tactics that succeeded; or tactics
relevant to a specified part of the program.

Editing. Prior to replay the user may wish to
make edit changes to the derivation, antici-
pating where replay may fail. For example
a sequence of transformations that applied
to some program part may be abstracted
and reapplied to a newly introduced object.
Or the user may wish to edit the derivation
and reapply it to the same specification to
quickly generate a new implementation.

Debugging. R.eplay is the reexecution of a “pro-
cess program.” Th us we can imagine a set
of debugging tools that are entered at break-
points or when the replay mechanism fails.
The debugger will allow tactic variables to
be examined or changed, examine frames of
tactic invocation, and perform other activi-
ties usually provided by a debugger.

113

3 Results

We have used the replay mechanism on a sim-
ple example of computing basic statistics such
as the mean, variance, and frequency. :Figure 2
shows the initial specification. An explanation
of the operators appearing in the prog:ram can
be found in [5]. Figure 3 shows the development
just prior to data structure selection. Each of the
high-level operators such as reduce has been re-
fined into loops, and these loops have been fused
together so that a single pass is made over the
input, and so no intermediate expressions are re-
quired. The efficiency of the computation of the
map freq has been speeded up asymptotically by
iterator inversion. Data structure selection will
choose an array implementation for freq and the
input sequence.

Next we modify the program by changing, the def-
inition of freq to yield histogram data, in which

ranges of data values are counted, and by the
inclusion of the computation of the maximum
value. Figure 4 shows the modified program. Fig-
ure 5 shows the result of replay.

Even though the definition of freq was changed
the original development was successfully ap-
plied. The other development steps, that were
independent of the change, were also replayed.
Finally Figure 6, shows additional development
steps needed to incorporate the computation of
the maximum value into the main loop of the
program.

A second, more involved example is based on
a scheduling problem in which precedence con-
strained jobs are scheduled on a uni-processor
system (only one job may be scheduled at a time).
In [5] we outlined this complex derivation which
requires over 40 steps. We modified the specifi-
cation to solve the problem of multi-processing
scheduling and were able to replay successfully
all of the steps of the derivation.

Figure 2: The Initial Specification

114

F

F

Figure 3: The Implementation of the Original Specification

Figure 4: The Modified Specification

115

r"p,*(tnregrr. r911. r**1. .rp(tnreper. tnt*g*rl)

I rrm>

SW <- 9un . x-v-9,

Y <- I . Y,

I: <- r-v-9 l 1 Ia,

rREp(x) <- 1 l IRal(X).

,“n-w-9Q”aRr, <- ,““-or-g”nRo . I-Y-R * I-V-.

.-.‘urns <<W”. N,, WROD. Wn-Of-BURRCS>>.

P-r . P-6.1.

,“I1 . ,-c.1,

w . ,-II.*,

P-S - ,-6.2,

fRlQ . P-5.1,

sUfl-of-XIUnRLs . P-l.2.

“RXmM - r**vcr(‘“Rx. S))

ol. Sam I *.

(W . wl-or-WmLS - 9w l 9lm)

Figure 5: The Modified Specification after Replay

. ,or. (I-"4 ,

sun - 9.
Y . . .

FREQ - (l..bd.

(X , x tn (9 . . 9))
r*‘urn~(RCsULT I b-W)

0).

x.
sun-or-WJancs . 9.

ICC""-* . r3rr‘(s))
I-V-6 w.r f,
S”” <- W” . X-V-R,

w <- I . Y.
x <- I-V-. *1r lo.

rRCQ(X) <- I . FRCWX).
,““-Of-P”ORO <- 9”~W.B”RRR9 . I-V-9 . I-V-9,

RCCull-1 i- l ax(RCCUl-1, I-i-9,
r*turn* 01. ¶u” , II.

(n . I""-SF-SWRES - SW l SW

/ W l W),

fRCQ.

ntcclm-I>

I
a ---

\I
,*cus *nt‘l,1I‘* (wrr-,rarr,rlcr,
I.CL,Ct: co.par .y I‘rr.rIon ---
I.C‘,Cs: to.p”‘r by I‘*r.‘ton ---
,.cLtcs: to.pur* by ~rw.‘lon ---
T.Ct,C*: co.put* by It~r.‘lon ---
s,.p,rry: cont."r-**prn*mr. ,er"WO R, b.Ck"Wd: * ---
9,.p,,,y: sonr.rr-0*p.n*.nr. ,c.rr.ra 2, ,.C."*rO: 5 ---
s,.p,1ry: COn~.“1-(“d.pl”d~nl-f.*‘ ---
I",. "Oc,*om.lly ---
‘u,. Hor,*or+~.,,Y ---

&-,,0,, ~.,,,a ,-.wr,,. rul. RtO"ClIbl-06IO-IOR-LOOP r8ducs('RRX. ¶)

Figure 6: The Final ImplementaCon of the Modified Program

I.16

Because of the existence of a large existing base
of software there is work on recovery of design
knowledge from code. In [2] he emphasizes the
existence of semantic clues in documenta.tion and
variable names that will aid in design recovery.
We have adopted in our use of name correspon-
dence this idea. Examples of work on design re-
covery can be found in [35, 33, 161.

Our tactic language is simi1a.r to [34, 181. A richer
more theoretical approach is being pursued by
[29, 151 using the Deva langua.ge.

Closer to the spirit of the work reported here is
work done at Rutgers University. Their work is
couched in a transformational framework. Two
domains are addressed: circuit designs [22] and
heuristic search algorithms [24, 231.

4 Related Work

The literature on software reuse is very extensive,
but most of it deals with component reuse, i.e.
the reuse of subroutines. A collection of papers,
edited by Biggerstaff and Perlis [3,4] emphasizes
genemtiue systems, such as ours which offer de-
sign reuse and the promise greater productivity
improvements in the long run. Many of the ex-
isting transformational systems are described in
the collection. This is an excellent survey of the
field. See also [19] for a perspective on the reuse
of design plans.

There is also an extensive Artificial Intelligence
literature on analogy and machine learning. R.ep-
resentative of work of this kind is [7].

5 Conclusions

Initial experiments with the replay system has
been encouraging. Furthermore the tactic ap-
proach appears to be a sound and useful basis for
making transformation systems productive vehi-
cles for formal software development activities.
While the varied use of analogy in its full gen-
erality is not captured in our work the ability

to support evolutionary development a.nd main-
tenance appears feasible. Without such a mech-
anism intcra.ctive formal development of prgrams
would be impractical.

Acknowledgements. I would like to thank
Greg Fisher and Tom Pressburger for useful dis-
cussions and for, along with Limei Gilham, im-
plementing the replay system.

References

PI

PI

PI

PI

PI

PI

PI

BATES, J. L., AND CONSTABLE, R. L.
Proofs as programs. ACM Transactions on
Programming Languages and Systems 7, 1
(January 1985), 113-136.

BIGGERSTAFF, T. J. Design Recovery for
Maintenance- and Reuse. Tech. Rep. STP-
378-88, MCC Corporation, November 1988.

BIGGERSTAFF, T. J. Software Reusability,
Vol. 1: Concepts and Models. ACM Press,
New York, 1989.

BIGGERSTAFF, T. J. Software Reusability,
Vol. 2: Applications and Experience. ACM
Press, New York, 1989.

BLAINE, L., GOLDBERG, A., PRESS-

BURGER, T., QIAN, X., ROBERTS, T.,
AND WESTFOLD, S. Progress on the KBSA
Performance Estimation Assistant. Tech.
Rep. KES.U.88.11, Kestrel Institute, May
1988.

BOYLE, J. M., AND MURALIDHARN, M. N.
Program reusability through pr0gra.m trans-
formation. IEEE Transactions on Software
Engineering SE-f& 5 (September 1984),
574-588.

CARBONELL, J. Derivational analogy: a
theory of reconstructive problem solving and
expertise acquisition. In Machine Learn-
ing: An Artificial Intelligence Approach,
R. Michalski, J. Carbonell, and T. Mitchell,
Eds., Morgan Ka,ufmann, Los Altos, CA.,
1986, pp. 371-392.

117

[8] CONSTABLE, R. L. Implementing Mathe-
matics with the NuPri Proof Development
System. Prentice-Han, New York, 1986.

[9] DARLINGTON, J.D. ET AL. A functional
programming environment supporting exe-
cution, partial execution and trausforma-
tion. In PARLE 89: Parallel Architectures &
Languages Europe, Vol. I: Parallel .4rchitec-
tures, E. Odijk, M. Rem, and J. Syre, Eds.,
Springer-Verlag, New York, 1989, pp. 286-
305. Lecture Notes in Computer Science,
Vol. 365.

[lo] DIJKSTRA, E. W. A Discipline ofProgram-
ming. Prentice-Hall, Englewood Cliffs, NJ,
1976.

[ll] FICKAS, S. F. Automating the transforma-
tional development of software. IEE.E Tmns-
actions on Software Engineering S.E-1 I, 11
(November 1985), 1268-1278.

[12] GORDON, M. J., MILNER, A. J., AND

WADSWORTH, C. P. Edinburgh LCF: A
Mechanised Logic of Computation. Springer-
Verlag, Berlin, 1979. Lecture Notes in Com-
puter Science, Vol. 78.

[13] HORWITZ, S., PRINS, J., AND REPS, T.
Integrating non-interfering versions of pro-
grams. In Fifteenth ACM Symposium on
Principles of Progmmming Languages (San
Diego, CA, January 13-15, 1988) ACM,
pp. 133-145.

[14] HORWITZ, S., PRINS, J., AND REPS, T.
On the adequacy of program dependence
graphs for representing programs. In Fif-
teenth ACM Symposium on Principles of
Programming Languages (San Die,go, CA,
January 13-15, 1988), ACM, pp. 146-157.

[15] HUSSAIN, F. A., DE GROOTE, P.,
JACQUARD, R., J;~HNICHEN, S., NGUYEN,
T. T., SINTZOFF, M., AND WEBIER, M.
Esprit Project ToolUse - Requirements and
Feasibility Studies for a Development Lan-
guage. Tech. Rep. GMD 214, Gesellschaft fiir
Mathematik und Datenverarbeitung mbH,
July 1986.

[16] LETOVSKY, S., AND SOLOWAY, E. Delo-
calized plans and program comprehension.
IEEE Software 3, 3 (May 1986) 41-49.

[17] MEERTENS, L. Progmm Specification and
Tmnsforma lion (Proceedings of the IFIP
TCZ/WG 2.1 Working Conference). North-
Holland, Amsterdam, 1987.

[18] MILNER, R. The use of machines to assist in
rigorous proof. In Mathematical Logic and
Programming Languages, C. A. R. Hoare
and J. C. Shepherdson, Eds., Prentice-Hall,
Englewood Cliffs, NJ, 1985, pp. 77-87.

[19] MOSTOW, J. Design by derivational anal-
ogy: issues in the automated replay of de-
sign plans. Artificial Intelligence 4U, l-3
(September 1989), 119-184.

[20] MOSTOW, J. Some requirements for effec-
tive replay of derivations. In Proceedings
of the Third International Machine Learning
Workshop (Skytop, PA, June 1985), Rutgers
University, pp. 129-132.

[21] MOSTOW, J. Toward better models of the
design process. AI hfagaaine 6, 1 (Spring
1985) 44-57.

[22] MOSTOW, J., AND BARLEY, M. Automated
Reuse of Design Plans. Tech. Rep. ML-TR-
14, R.utgers University, May 1987.

[23] MOSTOW, J., AND FISHER, G. Replay-
ing tra.nsformational derivat,ions of heuristic
search algorithms in DIOGENES. In Pro-
ceedings of the DA RPA Case-Based Reason-
ing Workshop (Pensicola, FL, May 1989).
Available as Rutgers AI/Design Project
Working Paper Number 113-3.

[24] MOSTOW, J., AND FISHER, G. Replay-
ing transformational derivations of heuris-
tic search algorithms in DIOGENES. In
Proceedings of the AAAI 1989 Spring Sym-
posium on AI and Software Engineering
(Palo Alto, CA, March 1989). Available as
Rutgers AI/Design Project Working Paper
Number 113-1.

[25] OSTERWEIL, L. Software processes are soft-
ware too. In 9th International Conference

118

on Software Engineering (Monterey, CA,
Ma.rch 30-April 2, 1987), pp. 2-13.

[35] WILLS, L. M. Automated Program Recogni-
lion. Tech. R.ep. MIT-AI-904, MIT AI Lab-
oratory, February 1987.

[26] PAIGE, R., AND HENGLEIN, F. Mechanical
translation of set theoretic problem speci-
fications into efficient RAM code - a case
study. Journal of Symbolic Computation 4,
2 (1987), 207-232.

[27] PARTSCH, H., AND STEINBR~~GGEN, R.
Program transformation systems. ACM
Computing Surveys 15, 3 (September 1983),
199-236.

[28] PEPPER, P., Ed. Program Tmnsformation
and Programming Environments. Springer-
Verlag, New York, 1983.

[29] SINTZOFF, M. Desiderata for a Design Cal-
culus. Tech. Rep., RM 85-13, Universitd
Catholique de Louvain, June 1985.

[301 SMITH, D. R. KIDS - a knowledge-based
software development system. In Proceed-
ings of the Workshop on Automating Soft-
ware Design (St. Paul, MN, August 25,
1988). (also Technical R.eport KES.U.88.7,
Kestrel Institute, October 1988).

[31] SMITH, D. R. KIDS - a semi-automatic
program development system. to appear in
IEEE Tmnsactions on Software Engineering
special issue on Formal Methods, September
1990.

[32] SMITH, D. R.
Structunz and Design of Global Search AI-
gorithms. Tech. Rep. KES.U.87.12, Kestrel
Institute, November 1987. to appear in Acta
Znformatica.

[33] SOLOWAY, E., AND JOHNSON, W. L.
PROUST: knowledge-based program under-
standing. IEEE Transactions on Software
Engineering SE-11, 3 (March 1985), 267-
275.

[34) WILE, D. S. Program developments: for-
mal explanations of implementations. Com-
munications of the ACM 26, 11 (November
1983), 902-911.

119

